

Zweikanal-Hall-Effekt-Schalter CYD8526 mit Geschwindigkeits- und

Richtungsausgängen

Der Schalter CYD8526 ist ein Zweikanal-Hall-Effekt-Schalter-IC, der sich ideal für den Einsatz in Geschwindigkeits- und Richtungserfassungsanwendungen mit kodierten Ringmagnet-Targets eignet. Die Hall-Elemente sind beide photolithographisch besser als 1 µm ausgerichtet. Das Aufrechterhalten einer genauen Verschiebung zwischen den beiden aktiven Hall-Elementen beseitigt die Haupthürde bei der Herstellung, die bei Anwendungen zur Feinabstimmungserkennung angetroffen wird. Der CYD8526 ist ein empfindliches, temperaturstabiles Magnetschalter, der für den Einsatz in rauen Automobil- und Industrieumgebungen geeignet ist.

Die Hall-Elemente des Sensors CYD8526 haben einen Abstand von 1,4 mm, was hervorragende Geschwindigkeits- und Richtungsinformationen für kleingeometrische Ziele liefert. Extrem driftarme Verstärker garantieren Symmetrie zwischen den Schaltern, um die Signalquadratur aufrechtzuerhalten. Ein On-Chip-Regler ermöglicht die Verwendung dieses Schalters über einen weiten Betriebsspannungsbereich von 3,5 V bis 24 V.

Der CYD8526 ist in einem 4-Pin-SIP-Gehäuse und einem Kunststoff-SOT89B-Gehäuse erhältlich. Die Gehäuse sind bleifrei (Pb) und haben eine 100 % matte Zinn-Leadframe-Beschichtung.

Eigenschaften

- Zwei aufeinander abgestimmte Hall-Schalter auf einem Substrat
- Zweikanalige Ausgänge für Geschwindigkeit und Richtung
- Gute Temperaturstabilität
- Hohe Empfindlichkeit (B_{OP} and B_{RP})
- 3.5V bis 24V Versorgungsspannung
- Halbleiter -Zuverlässigkeit
- Kleine Gehäusegrößen
- RoHS-konform

Anwendungen

- Einklemmschutz in Elektromotorsteuerungen
- Motor- und Ventilatorsteuerung Magnetischer Encoder
- Überwachung der rotierenden Welle
- Automotive Getriebeposition
- Garagenöffner
- Elektrische Schiebetüren
- Schiebedachmotoren

Produktinformationen

Teilnummer	Verpackung	Montage	Temperatur	B _{OP} (typ.)	BRP (Typ.)
CYD8526VB	1000 Stück/Beutel	4-pin SIP	-40°C~150°C	+10.0mT	-10.0mT

Elektrische Spezifikationen

Über den Betriebsfreilufttemperaturbereich ($V_{DD} = 5.0 \text{ V}$, sofern nicht anders angegeben)

Symbol	Parameter	Testbedingungen	Min.	Тур.	Max.	Einheiten
V_{DD}	Betriebsversorgungsspannung	$T_J < T_{J \text{ (max)}}$	3.50		24	V
I _{DD}	Betriebsspannungsversorgung	V _{DD} =3.5 to 24V	2.0	4.0	6.5	mA
t _{on}	Einschaltzeit			35	50	μs
I _{OL}	Ausgeschalteter Leckstrom	Ausgang Hi-Z			1	μA
R _{DS(on)}	FET-Einschaltwiderstand	V _{DD} =5V, Io=10mA, TA=25°C		20		Ω
td	Ausgangsverzögerungszeit	B=B _{RP} to B _{OP}		13	25	μs
tr	Anstiegszeit des Ausgangs	R1=1kΩ, Co=50pF			0.5	μs
tf	Abfallzeit des Ausgangs	R1=1kΩ, Co=50pF			0.2	μs
f _{BW}	Bandbreite		40			kHz

Magnetische Spezifikationen

Symbol	Parameter	Testbedingungen	Min.	Тур.	Max.	Einheiten
B _{OP}	Arbeitspunkt		7.0	10.0	13.0	mT
B _{RP}	Freigabepunkt	VB-Gehäuse	-13.0	-10.0	-7.0	mT
B _{HYS}	Hysterese			20		mT
Во	Magnetischer Offset	Bo=(B _{OP} +B _{RP})/2		0		mT

¹mT = 10Gs

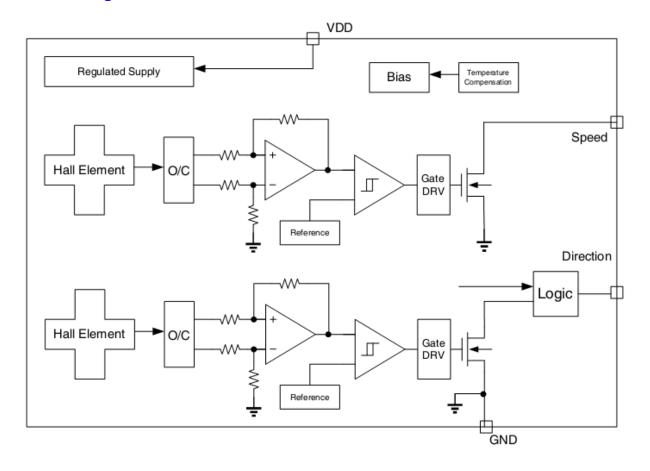
Grenzwerte

Über den Betriebsfreilufttemperaturbereich

Parameter	Symbol	Min	Max.	Einheit
Versorgungsspannung	V_{DD}	-0.5	35	V
Ausgangsspannung	V_{OUT}	-0.5	35	V
Ausgangssenkungsstrom, I _{OUT}	I _{SINK}	0	30	mA
Betriebstemperaturbereich	T _A	-40	150	°C
Maximale Sperrschichttemperatur	T _J	-55	165	°C
Lagertemperaturbereich	T _{STG}	-65	175	°C

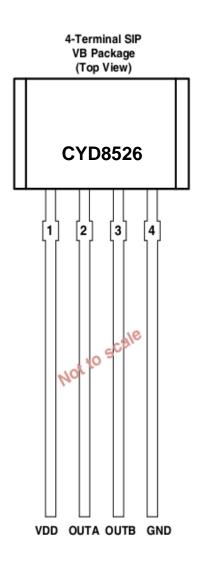
Hinweis: Spannungen, die über die hier aufgeführten Werte hinausgehen, können den Schalter dauerhaft beschädigen. Wenn der Schalter über einen längeren Zeitraum absoluten Höchstbelastungen ausgesetzt wird, kann dies die Zuverlässigkeit des Schalters beeinträchtigen.

Thermische Eigenschaften


Symbol	Parameter	Testbedingungen	Wert	Einheit
R_{QJA}	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	177	°C/W
	VB-Gehäuses	Kupfer auf die Lötpunkte beschränkt		
R_{QJA}	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	140	°C/W
	BU-Gehäuses	Kupfer auf die Lötpunkte beschränkt		

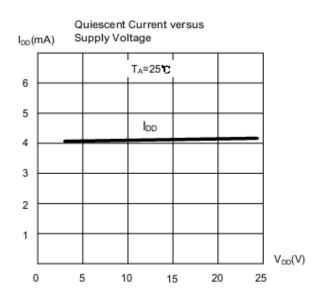
ESD-Schutz

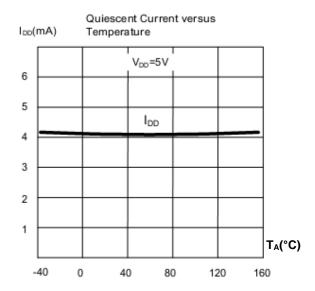
Modell des menschlichen Körpers (Human Body Model HBM) Tests gemäß: Standard EIA/JESD22-A114-B HBM

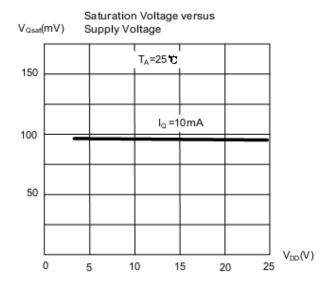

Parameter	Symbol	Min.	Max.	Einheit
ESD-Schutz	V_{ESD}	-6	6	KV

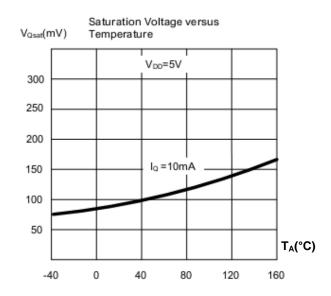
Funktionsdiagramm

Terminalkonfiguration und Funktionen

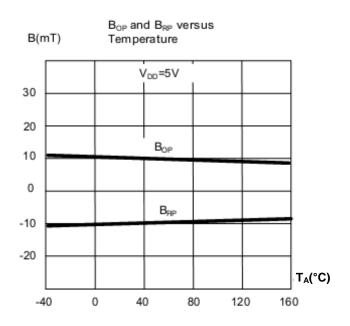


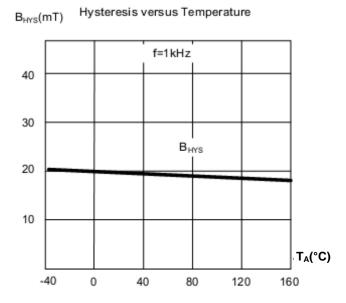

Pin-Anordnung

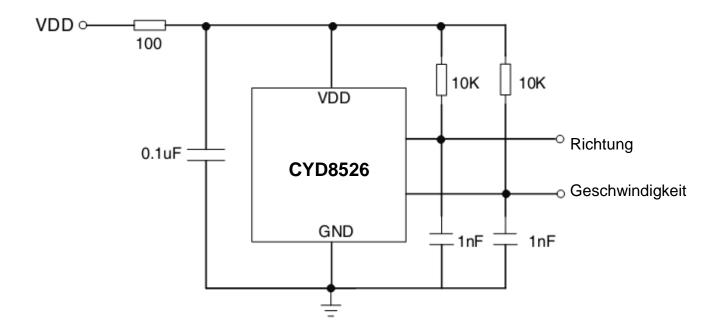

Ansc	nluss	Turn	Beschreibung	
Name	Pin (VB-Gehäuse)	Тур		
V_{DD}	1	Stromversorgung	3,5 bis 24 V Spannungsversorgung	
Richtungsausgang	2	Ausgang	Richtungsausgang, OC, benötigt	
			einen Pull-up-Widerstand	
Geschwindigkeits-	3	Ausgang	Drehzahlausgang, OC, benötigt einen	
Ausgang			Pull-Up-Widerstand	
GND	4	Erdung	Erdungsklemme	



Charakteristische Daten

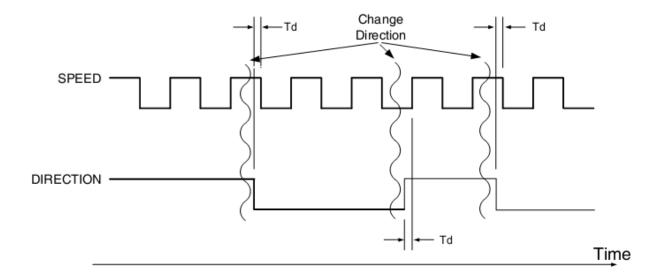


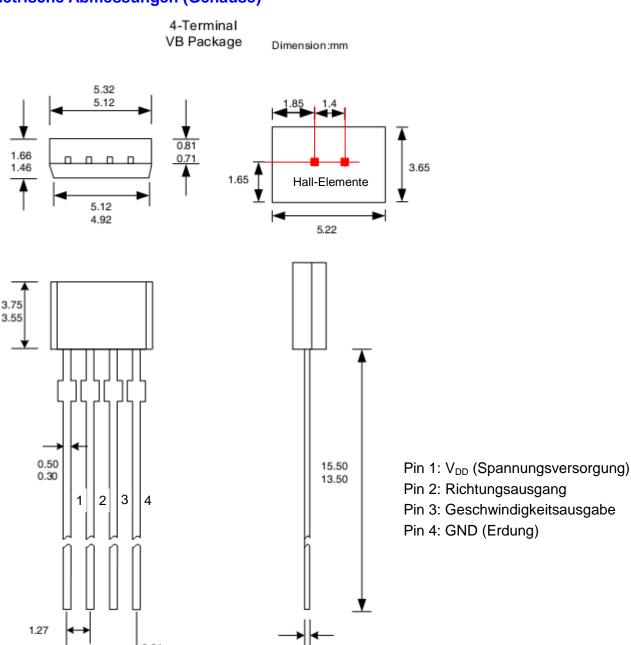




Charakteristische Daten (Fortsetzung)




Typische Anwendungsschaltung


Typische Ausgangswellenform

Geometrische Abmessungen (Gehäuse)

Hinweise:

1. Genaue Gehäuse- und Leitungskonfiguration nach Wahl des Anbieters innerhalb der angegebenen Grenzen

0.40

- 2. Höhe beinhaltet keinen Formangussgrat
- 3. Wo keine Toleranz angegeben ist, ist das Maß nominal

3.71